Matemáticos UdeC buscan aportar en prevenir propagación de incendios
Crédito: CI²MA
El principal impulsor de la idea es Elvis Gavilán Gutiérrez, académico de la Facultad de Ciencias Forestales, quien colabora con investigadores de Chile y el extranjero para abordar esta problemática con alto impacto social.
“Además de los grandes incendios ocurridos en al Amazonas, Australia, California y otros lugares, estos eventos también se han dado en Chile en los últimos años, por lo cual estudiar modelos de propagación de incendios resulta interesante desde el punto de vista académico y, por supuesto, práctico; lo cual por sí solo constituye un gran desafío”, explica el Doctor en Ciencias Aplicadas con mención en Ingeniería Matemática de la Universidad de Concepción, y académico del Departamento de Silvicultura de la Facultad de Ciencias Forestales (FCF), Elvis Gavilán Gutiérrez.
Hasta el momento, el investigador ha desarrollado estudios que contribuyen en esta importante problemática, que en nuestro país y el mundo tiene un alto impacto económico y social, colaborando con colegas de la propia UdeC, como Raimund Bürger, académico del Departamento de Ingeniería Matemática e investigador del Centro de Investigación en Ingeniería Matemática, CI²MA, y Daniel Inzunza; además de Luis Miguel Villada de la Universidad del Bío-Bío y Pep Mulet de la Universitat de València, España.
“La idea es poder generar interacción desde el punto de vista académico y práctico con profesores vinculados directamente al terreno propiamente tal”, explica sobre conversaciones que ya ha tenido con sus colegas de la FCF.
Recientemente, el grupo de ingenieros matemáticos ha coescrito un par de artículos para revistas especializadas (1, 2), acerca de la “propagación de los incendios desde la óptica de los métodos numéricos, y nos concentramos en estudiar el comportamiento del fuego bajo los efectos de la implementación de los llamados cortafuegos y el cambio en la dirección del viento”, agrega Gavilán.
Algunos de los principales resultados alcanzados, explica Gavilán, tienen que ver con que “el ancho en la confección de los cortafuegos resulta fundamental pues, por ejemplo, dicha medida puede hacer la diferencia de si un incendio forestal en un pastizal o bosque pueda llegar o no a un sitio que resulte primordial proteger, como es el caso de las viviendas”. En este sentido, detalla el científico, “un ejemplo de ello lamentablemente fueron los incendios en la zona centro sur del país durante el verano de 2017″.
Para aportar en la prevención de este tipo de tragedias, Gavilán explica que “otro asunto interesante —el cual estamos estudiando actualmente— es la confección de mapas de riesgo, los cuales —bajo ciertos supuestos— permiten conocer qué tan afectado podría verse un determinado terreno que resulte importante proteger según el lugar en donde se origine el foco inicial de un incendio”.
“Ahora viene la tarea de vincular la investigación matemática con la parte práctica a partir de la interacción con académicos de otras áreas”, detalla el investigador.
Acerca de la aplicabilidad de los modelos desarrollados, agrega que “las ecuaciones diferenciales parciales y los sistemas dinámicos permiten modelar una cantidad considerable de fenómenos biológicos distintos, como las invasiones biológicas, dinámica de poblaciones de insectos y sanidad forestal. Por ejemplo, en este último, hay sistemas de ecuaciones diferenciales que permiten predecir la propagación de virus en plantas, de manera más o menos análoga, o cómo ocurren con ciertos modelos epidemiológicos como el SEIR (Susceptible-Expuesto-Infeccioso-Recuperado), en el caso de los humanos y animales”, sentencia.
- Compartir
- Compartir